Sound event detection in real life recordings using coupled matrix factorization of spectral representations and class activity annotations

    Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

    83 Sitaatiot (Scopus)
    7 Lataukset (Pure)

    Abstrakti

    Methods for detection of overlapping sound events in audio involve matrix factorization approaches, often assigning separated components to event classes. We present a method that bypasses the supervised construction of class models. The method learns the components as a non-negative dictionary in a coupled matrix factorization problem, where the spectral representation and the class activity annotation of the audio signal share the activation matrix. In testing, the dictionaries are used to estimate directly the class activations. For dealing with large amount of training data, two methods are proposed for reducing the size of the dictionary. The methods were tested on a database of real life recordings, and outperformed previous approaches by over 10%.
    AlkuperäiskieliEnglanti
    Otsikko2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
    KustantajaIEEE
    Sivut151-155
    Sivumäärä5
    ISBN (painettu)9781467369978
    DOI - pysyväislinkit
    TilaJulkaistu - 2015
    OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
    TapahtumaIEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING -
    Kesto: 1 tammik. 19001 tammik. 2000

    Conference

    ConferenceIEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING
    Ajanjakso1/01/001/01/00

    Julkaisufoorumi-taso

    • Jufo-taso 1

    Sormenjälki

    Sukella tutkimusaiheisiin 'Sound event detection in real life recordings using coupled matrix factorization of spectral representations and class activity annotations'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä