Sound Event Envelope Estimation in Polyphonic Mixtures

Tutkimustuotos: KonferenssiartikkeliScientificvertaisarvioitu

4 Sitaatiot (Scopus)
6 Lataukset (Pure)

Abstrakti

Sound event detection is the task of identifying automatically the presence and temporal boundaries of sound events within an input audio stream. In the last years, deep learning methods have established themselves as the state-of-the-art approach for the task, using binary indicators during training to denote whether an event is active or inactive. However, such binary activity indicators do not fully describe the events, and estimating the envelope of the sounds could provide more precise modeling of their activity. This paper proposes to estimate the amplitude envelopes of target sound event classes in polyphonic mixtures. For training, we use the amplitude envelopes of the target sounds, calculated from mixture signals and, for comparison, from their isolated counterparts. The model is then used to perform envelope estimation and sound event detection. Results show that the envelope estimation allows good modeling of the sounds activity, with detection results comparable to current state-of-the art.
AlkuperäiskieliEnglanti
OtsikkoICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
KustantajaIEEE
Sivut935-939
Sivumäärä5
ISBN (elektroninen)978-1-4799-8131-1
ISBN (painettu)978-1-4799-8132-8
DOI - pysyväislinkit
TilaJulkaistu - 17 huhtik. 2019
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING -
Kesto: 1 tammik. 19001 tammik. 2000

Julkaisusarja

NimiIEEE International Conference on Acoustics, Speech and Signal Processing
ISSN (painettu)1520-6149
ISSN (elektroninen)2379-190X

Conference

ConferenceIEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING
Ajanjakso1/01/001/01/00

Julkaisufoorumi-taso

  • Jufo-taso 1

Sormenjälki

Sukella tutkimusaiheisiin 'Sound Event Envelope Estimation in Polyphonic Mixtures'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä