Spectral optimization of supercontinuum shaping using metaheuristic algorithms, a comparative study

Mathilde Hary, Teemu Koivisto, Sara Lukasik, John M. Dudley, Goëry Genty

Tutkimustuotos: ArtikkeliTieteellinenvertaisarvioitu

7 Lataukset (Pure)

Abstrakti

Supercontinuum generation in optical fiber involves complex nonlinear dynamics, making optimization challenging, and typically relying on trial-and-error or extensive numerical simulations. Machine learning and metaheuristic algorithms offer more efficient optimization approaches. We report here an experimental study of supercontinuum spectral shaping by tuning the phase of the input pulses, different optimization approaches including a genetic algorithm, particle swarm optimizer, and simulated annealing. We find that the genetic algorithm and particle swarm optimizer are more robust and perform better, with the particle swarm optimizer converging faster. Our study provides valuable insights for the systematic optimization of supercontinuum and other optical sources.

AlkuperäiskieliEnglanti
Artikkeli377
JulkaisuScientific Reports
Vuosikerta15
Numero1
DOI - pysyväislinkit
TilaJulkaistu - 2025
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisufoorumi-taso

  • Jufo-taso 1

!!ASJC Scopus subject areas

  • General

Sormenjälki

Sukella tutkimusaiheisiin 'Spectral optimization of supercontinuum shaping using metaheuristic algorithms, a comparative study'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä