Split Without a Leak: Reducing Privacy Leakage in Split Learning

Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

Abstrakti

The popularity of Deep Learning (DL) makes the privacy of sensitive data more imperative than ever. As a result, various privacy-preserving techniques have been implemented to preserve user data privacy in DL. Among various privacy-preserving techniques, collaborative learning techniques, such as Split Learning (SL) have been utilized to accelerate the learning and prediction process. Initially, SL was considered a promising approach to data privacy. However, subsequent research has demonstrated that SL is susceptible to many types of attacks and, therefore, it cannot serve as a privacy-preserving technique. Meanwhile, countermeasures using a combination of SL and encryption have also been introduced to achieve privacy-preserving deep learning. In this work, we propose a hybrid approach using SL and Homomorphic Encryption (HE). The idea behind it is that the client encrypts the activation map (the output of the split layer between the client and the server) before sending it to the server. Hence, during both forward and backward propagation, the server cannot reconstruct the client’s input data from the intermediate activation map. This improvement is important as it reduces privacy leakage compared to other SL-based works, where the server can gain valuable information about the client’s input. In addition, on the MIT-BIH dataset, our proposed hybrid approach using SL and HE yields faster training time (about 6 times) and significantly reduced communication overhead (almost 160 times) compared to other HE-based approaches, thereby offering improved privacy protection for sensitive data in DL.

AlkuperäiskieliEnglanti
OtsikkoSecurity and Privacy in Communication Networks - 19th EAI International Conference, SecureComm 2023, Proceedings
ToimittajatHaixin Duan, Mourad Debbabi, Xavier de Carné de Carnavalet, Xiapu Luo, Man Ho Allen Au, Xiaojiang Du
KustantajaSpringer
Sivut321-344
Sivumäärä24
ISBN (elektroninen)978-3-031-64954-7
ISBN (painettu)978-3-031-64953-0
DOI - pysyväislinkit
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaEAI International Conference on Security and Privacy in Communication Networks - Hong Kong, Kiina
Kesto: 19 lokak. 202321 lokak. 2023

Julkaisusarja

NimiLecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering
Vuosikerta568 LNICST
ISSN (painettu)1867-8211
ISSN (elektroninen)1867-822X

Conference

ConferenceEAI International Conference on Security and Privacy in Communication Networks
Maa/AlueKiina
KaupunkiHong Kong
Ajanjakso19/10/2321/10/23

Julkaisufoorumi-taso

  • Jufo-taso 1

!!ASJC Scopus subject areas

  • Computer Networks and Communications

Sormenjälki

Sukella tutkimusaiheisiin 'Split Without a Leak: Reducing Privacy Leakage in Split Learning'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä