Stacked iterated posterior linearization filter

Matti Raitoharju, Ángel F. García-Fernández, Simo Ali-Löytty, Simo Särkkä

Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

Abstrakti

The Kalman Filter (KF) is a classical algorithm that was developed for estimating a state that evolves in time based on noisy measurements by assuming linear state transition and measurements models. There exist various KF extensions for non-linear situations, but they are not exact and provide different linearization errors. The Iterated Posterior Linearization Filter (IPLF) does the linearizations iteratively to achieve better linearizations. However, it is possible that some measurements cannot be well linearized using the current knowledge, but their linearization may be better after more measurements are available. Thus, we propose an algorithm that can store the older state elements and measurements when their linearization error is high. The resulting algorithm, the Stacked Iterated Posterior Linearization Filter (S-IPLF), is based on linear dynamic models and uses information from multiple time instances to make the linearization of the measurement function. Results show that the proposed algorithm outperforms traditional KF extensions when some of the measurements cannot be well linearized with the current knowledge, but can be when future information is available.

AlkuperäiskieliEnglanti
OtsikkoFUSION 2024 - 27th International Conference on Information Fusion
KustantajaIEEE
ISBN (elektroninen)9781737749769
DOI - pysyväislinkit
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
Tapahtuma27th International Conference on Information Fusion, FUSION 2024 - Venice, Italia
Kesto: 7 heinäk. 202411 heinäk. 2024

Julkaisusarja

NimiFUSION 2024 - 27th International Conference on Information Fusion

Conference

Conference27th International Conference on Information Fusion, FUSION 2024
Maa/AlueItalia
KaupunkiVenice
Ajanjakso7/07/2411/07/24

Julkaisufoorumi-taso

  • Jufo-taso 1

!!ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Information Systems
  • Signal Processing
  • Information Systems and Management

Sormenjälki

Sukella tutkimusaiheisiin 'Stacked iterated posterior linearization filter'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä