Abstrakti
The performance of large-scale stirred tank and bubble column bioreactors is often hindered by insufficient macromixing of feeds, leading to heterogeneities in pH, substrate, and oxygen, which complicates process scale-up. Appropriate feed placement or the use of multiple feed points could improve mixing. Here, theoretically optimal placement of feed points was derived using one-dimensional diffusion equations. The utility of optimal multipoint feeds was evaluated with mixing, pH control, and bioreaction simulations using three-dimensional compartment models of four industrially relevant bioreactors with working volumes ranging from 8 to 237 m3. Dividing the vessel axially in equal-sized compartments and locating a feed point or multiple feed points symmetrically in each compartment reduced the mixing time substantially by more than a minute and mitigated gradients of pH, substrate, and oxygen. Performance of the large-scale bioreactors was consequently restored to ideal, homogeneous reactor performance: oxygen consumption and biomass yield were recovered and the phenotypical heterogeneity of the biomass population was diminished.
Alkuperäiskieli | Englanti |
---|---|
Sivut | 3549-3566 |
Sivumäärä | 18 |
Julkaisu | Biotechnology and Bioengineering |
Vuosikerta | 119 |
Numero | 12 |
DOI - pysyväislinkit | |
Tila | Julkaistu - jouluk. 2022 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
Julkaisufoorumi-taso
- Jufo-taso 2