Systems Pharmacogenomic Landscape of Drug Similarities from LINCS data: Drug Association Networks

Aliyu Musa, Shailesh Tripathi, Matthias Dehmer, Olli Yli-Harja, Stuart A. Kauffman, Frank Emmert-Streib

Tutkimustuotos: ArtikkeliTieteellinenvertaisarvioitu

12 Sitaatiot (Scopus)
23 Lataukset (Pure)

Abstrakti

Modern research in the biomedical sciences is data-driven utilizing high-throughput technologies to generate big genomic data. The Library of Integrated Network-based Cellular Signatures (LINCS) is an example for a large-scale genomic data repository providing hundred thousands of high-dimensional gene expression measurements for thousands of drugs and dozens of cell lines. However, the remaining challenge is how to use these data effectively for pharmacogenomics. In this paper, we use LINCS data to construct drug association networks (DANs) representing the relationships between drugs. By using the Anatomical Therapeutic Chemical (ATC) classification of drugs we demonstrate that the DANs represent a systems pharmacogenomic landscape of drugs summarizing the entire LINCS repository on a genomic scale meaningfully. Here we identify the modules of the DANs as therapeutic attractors of the ATC drug classes.

AlkuperäiskieliEnglanti
Artikkeli7849
JulkaisuScientific Reports
Vuosikerta9
Numero1
DOI - pysyväislinkit
TilaJulkaistu - 24 toukok. 2019
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisufoorumi-taso

  • Jufo-taso 1

Sormenjälki

Sukella tutkimusaiheisiin 'Systems Pharmacogenomic Landscape of Drug Similarities from LINCS data: Drug Association Networks'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä