TY - GEN
T1 - TauchiGPT_V2: An Offline Agent-based Opensource AI Tool designed to Assist in Academic Research
AU - Farooq, Ahmed
AU - Kangas, Jari
AU - Ziat, Mounia
AU - Raisamo, Roope
PY - 2024
Y1 - 2024
N2 - Recent progress in artificial intelligence, particularly deep learning, has ushered in a new era of autonomously generated content spanning text, audio, and visuals. This means Large Language Models (LLMs) such as ChatGPT, Llama2, Claude, and PaLM 2 are now developed enough to not only fill in the gaps within user-generated content, but also create unique content of their own, using predefined styles, formats, and writing techniques. With selective modelling and fine-tuning relevant training data, LLMs can output original content for a wide range of tasks previously considered solely the domain of human creativity. However, if we look at the area of research and development within academics, this AI renaissance has yet to make a meaningful impact finding in the pedagogical domains. Crafting a tailored R&D instrument, adept at intricate research procedures, previously presented a formidable challenge regarding expertise, time, and fiscal resources. However, the latest development Within this context, Generative Pre-trained Transformers (GPT) and their foundational structures offer a beacon, given their potential to exploit pre-trained Large Language Models (LLMs) for optimizing standard research operations. Our previous work on Autonomous Agents shows that using existing tools and deductive reasoning techniques built on the LangChain model can create a customized tool for academic research. This study builds on the existing work in autonomous agents and open-source LLMs to develop TAUCHI-GPT_V2, a novel adaptation of the academic research assistant. TAUCHI-GPT_V2, conceptualized as an open-source initiative, is built on top of the LangChain architecture employing LLaMA2-13b as the core LLM, ingesting users’ own data and files to provide highly relevant contextual results. In this paper, we discuss how TAUCHI-GPT_V2 uses custom offline localized vectorDB for parsing users’ personal files to output relevant contextual results within a chat interface. We also put the model to the test by having academic researchers utilize the tool within their daily workflow and report its efficacy and reliability in both hallucinations as well as citing relevant information to enhance user workflow for academic research-related tasks.
AB - Recent progress in artificial intelligence, particularly deep learning, has ushered in a new era of autonomously generated content spanning text, audio, and visuals. This means Large Language Models (LLMs) such as ChatGPT, Llama2, Claude, and PaLM 2 are now developed enough to not only fill in the gaps within user-generated content, but also create unique content of their own, using predefined styles, formats, and writing techniques. With selective modelling and fine-tuning relevant training data, LLMs can output original content for a wide range of tasks previously considered solely the domain of human creativity. However, if we look at the area of research and development within academics, this AI renaissance has yet to make a meaningful impact finding in the pedagogical domains. Crafting a tailored R&D instrument, adept at intricate research procedures, previously presented a formidable challenge regarding expertise, time, and fiscal resources. However, the latest development Within this context, Generative Pre-trained Transformers (GPT) and their foundational structures offer a beacon, given their potential to exploit pre-trained Large Language Models (LLMs) for optimizing standard research operations. Our previous work on Autonomous Agents shows that using existing tools and deductive reasoning techniques built on the LangChain model can create a customized tool for academic research. This study builds on the existing work in autonomous agents and open-source LLMs to develop TAUCHI-GPT_V2, a novel adaptation of the academic research assistant. TAUCHI-GPT_V2, conceptualized as an open-source initiative, is built on top of the LangChain architecture employing LLaMA2-13b as the core LLM, ingesting users’ own data and files to provide highly relevant contextual results. In this paper, we discuss how TAUCHI-GPT_V2 uses custom offline localized vectorDB for parsing users’ personal files to output relevant contextual results within a chat interface. We also put the model to the test by having academic researchers utilize the tool within their daily workflow and report its efficacy and reliability in both hallucinations as well as citing relevant information to enhance user workflow for academic research-related tasks.
KW - Artificial Intelligence
KW - Large Language Models
KW - Generative Pre-trained Transformers
KW - Human-Computer Interaction
KW - Opensource LLM Models
U2 - 10.54941/ahfe1004567
DO - 10.54941/ahfe1004567
M3 - Conference contribution
VL - 120
T3 - AHFE international
SP - 172
EP - 185
BT - Human Interaction and Emerging Technologies (IHIET-AI 2024)
A2 - Ahram, Tareq
A2 - Taiar, Redha
PB - AHFE International
CY - USA
T2 - International Conference on Human Interaction and Emerging Technologies
Y2 - 25 April 2024 through 27 April 2024
ER -