Siirry päänavigointiin
Siirry hakuun
Siirry pääsisältöön
Tampereen yliopiston tutkimusportaali Etusivu
Tuki ja usein esitetyt kysymykset
English
Suomi
Etusivu
Profiilit
Tutkimustuotokset
Tutkimusyksiköt
Aktiviteetit
Tutkimusaineistot
Tutkimusinfrastruktuurit
Lehtileikkeet
Palkinnot
Haku asiantuntemuksen, nimen tai kytköksen perusteella
Techniques for Spectral Voice Conversion
Julkaisun otsikon käännös
:
Techniques for Spectral Voice Conversion
Victor Popa
Tutkimustuotos
:
Väitöskirja
›
Monografia
228
Lataukset (Pure)
Yleiskatsaus
Sormenjälki
Sormenjälki
Sukella tutkimusaiheisiin 'Techniques for Spectral Voice Conversion'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.
Järjestys:
Painoarvo
Aakkosjärjestyksessä
Keyphrases
Voice Conversion
100%
Training Data
38%
Spectral Conversion
23%
Spectral Envelope
23%
Vector Quantization
15%
Conversion System
15%
Conversion Method
15%
Subarea
15%
Non-parallel
15%
Identity Conversion
15%
Synthesis System
15%
Local Linear Transformation
15%
Speech Representation
15%
Conversion Function
15%
Speaker Identity
15%
Over-smoothing
15%
Spectral Characteristics
7%
Popular
7%
Accuracy Improvement
7%
State-of-the-art Techniques
7%
Selection Mechanism
7%
Fundamental Frequency
7%
Overfitting
7%
Acoustics
7%
Control Scheme
7%
Further Development
7%
Codebook
7%
Easy Integration
7%
Alignment Method
7%
Full Training
7%
Multiple Models
7%
Concatenative
7%
Parallel Training
7%
Voice Characteristics
7%
Level Control
7%
Bilinear Model
7%
Conversion Model
7%
Dynamic Programming Algorithm
7%
Target Speaker
7%
Concatenated
7%
Speech Technology
7%
Many-to-many
7%
Multi-stage Vector Quantization
7%
Mode Selection
7%
GMM-based Voice Conversion
7%
Speech Signal
7%
Memory Saving
7%
Embedded Applications
7%
Line Spectral Frequencies
7%
Transformation Technique
7%
Text-dependent
7%
Memory Efficiency
7%
Linear Transformation Model
7%
Phonetics
7%
Global Model
7%
Speech Alignment
7%
HMM-based Speech Synthesis
7%
Speech Enhancement
7%
Reduced Data
7%
Speech Codec
7%
Practical Evaluation
7%
Frequency Representation
7%
Speech Model
7%
Speech Data Collection
7%
Internal Speech
7%
Alignment Strategy
7%
Analysis-by-synthesis
7%
Adaptation Techniques
7%
Hybrid Method
7%
Efficient Conversion
7%
Baseline Vector
7%
Automatic Speech
7%
Data Variance
7%
Mapping Accuracy
7%
Small Data
7%
Conversion Accuracy
7%
Soft Alignment
7%
Temporal Decomposition
7%
Formants
7%
Speaker Dependent
7%
Parametric Framework
7%
TTS System
7%
Conversion Applications
7%
Dynamic Time Warping
7%
Frequency Warping
7%
Phonetic Segmentation
7%
Equivalent Model
7%
GMM Model
7%
Warping Function
7%
New Targets
7%
Temporal Modeling
7%
Speech Parameterization
7%
Adaptation Models
7%
Speech Quality
7%
Engineering
Vector Quantization
100%
Conversion Function
66%
Linear Transformation
66%
Metrics
33%
Spectral Characteristic
33%
Accuracy Improvement
33%
State-of-the-Art Technique
33%
Frequency Representation
33%
Fundamental Frequency
33%
Control Scheme
33%
Code Book
33%
Related Application
33%
Speech Data
33%
Level Control
33%
Multistage
33%
Speech Signal
33%
Warping Function
33%
Dynamic Programming
33%
Speech Enhancement
33%
Embedded Application
33%
Target Data
33%
Desired Target
33%
Mode Selection
33%
Smaller Subset
33%
Line Spectra
33%
Computer Science
Training Data
100%
Vector Quantization
60%
Spectral Envelope
60%
Linear Transformation
40%
Conversion Function
40%
Conversion Scheme
40%
Future Direction
20%
Related Application
20%
Dynamic Programming
20%
Fundamental Frequency
20%
Spectral Characteristic
20%
Temporal Modeling
20%
Warping Function
20%
Embedded Application
20%
Frequency Representation
20%
Phonetic Content
20%
Practical Reason
20%
Speech Enhancement
20%
Popular Approach
20%
Hybrid Technique
20%
Frequency Warping
20%
Dynamic Time Warping
20%