The arithmetic Jacobian matrix and determinant

    Tutkimustuotos: ArtikkeliScientificvertaisarvioitu

    1 Sitaatiot (Scopus)

    Abstrakti

    Let α1,…, αm be such real numbers that can be expressed as a finite product of prime powers with rational exponents. Using arithmetic partial derivatives, we define the arithmetic Jacobian matrix Ja of the vector a = (α1,…, αm) analogously to the Jacobian matrix Jf of a vector function f. We introduce the concept of multiplicative independence of {α1,…, αm} and show that Ja plays in it a similar role as Jf does in functional independence. We also present a kind of arithmetic implicit function 1 theorem and show that Ja applies to it somewhat analogouslytheorem and show that Ja applies to it somewhat analogously as Jf applies to the ordinary implicit function theorem.

    AlkuperäiskieliEnglanti
    Artikkeli17.9.2
    JulkaisuJournal of Integer Sequences
    Vuosikerta20
    Numero9
    TilaJulkaistu - 2017
    OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

    Tutkimusalat

    • Arithmetic derivative
    • Arithmetic partial derivative
    • Implicit function theorem
    • Jacobian determinant
    • Jacobian matrix
    • Multiplicative independence
    • mathematics

    Julkaisufoorumi-taso

    • Jufo-taso 1

    Sormenjälki

    Sukella tutkimusaiheisiin 'The arithmetic Jacobian matrix and determinant'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä