The CORSMAL benchmark for the prediction of the properties of containers

Alessio Xompero, Santiago Donaher, Vladimir Iashin, Francesca Palermo, Gokhan Solak, Claudio Coppola, Reina Ishikawa, Yuichi Nagao, Ryo Hachiuma, Qi Liu, Fan Feng, Chuanlin Lan, Rosa H.M. Chan, Guilherme Christmann, Jyun Ting Song, Gonuguntla Neeharika, Chinnakotla K.T. Reddy, Dinesh Jain, Bakhtawar Ur Rehman, Andrea Cavallaro

Tutkimustuotos: ArtikkeliTieteellinenvertaisarvioitu

1 Sitaatiot (Scopus)
15 Lataukset (Pure)

Abstrakti

The contactless estimation of the weight of a container and the amount of its content manipulated by a person are key pre-requisites for safe human-to-robot handovers. However, opaqueness and transparencies of the container and the content, and variability of materials, shapes, and sizes, make this problem challenging. In this paper, we present a range of methods and an open framework to benchmark acoustic and visual perception for the estimation of the capacity of a container, and the type, mass, and amount of its content. The framework includes a dataset, specific tasks and performance measures. We conduct a fair and in-depth comparative analysis of methods that used this framework and audio-only or vision-only baselines designed from related works. Based on this analysis, we can conclude that audio-only and audio-visual classifiers are suitable for the estimation of the type and amount of the content using different types of convolutional neural networks, combined with either recurrent neural networks or a majority voting strategy, whereas computer vision methods are suitable to determine the capacity of the container using regression and geometric approaches. Classifying the content type and level using only audio achieves a weighted average F1-score up to 81% and 97%, respectively. Estimating the container capacity with vision-only approaches and filling mass with audio-visual approaches, multi-stage algorithms reaches up to 65% weighted average capacity and mass scores. These results show that there is still room of improvement for the design of future methods that will be ranked and compared on the individual leaderboards provided by our open framework.

AlkuperäiskieliEnglanti
Sivut41388-41402
Sivumäärä15
JulkaisuIEEE Access
Vuosikerta10
DOI - pysyväislinkit
TilaJulkaistu - 2022
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisufoorumi-taso

  • Jufo-taso 2

!!ASJC Scopus subject areas

  • Yleinen tietojenkäsittelytiede
  • Yleinen materiaalitiede
  • Yleinen tekniikka

Sormenjälki

Sukella tutkimusaiheisiin 'The CORSMAL benchmark for the prediction of the properties of containers'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä