The machine learning approach for analysis of sound scenes and events

    Tutkimustuotos: LukuScientificvertaisarvioitu

    10 Sitaatiot (Scopus)

    Abstrakti

    This chapter explains the basic concepts in computational methods used for analysis of sound scenes and events. Even though the analysis tasks in many applications seem different, the underlying computational methods are typically based on the same principles. We explain the commonalities between analysis tasks such as sound event detection, sound scene classification, or audio tagging. We focus on the machine learning approach, where the sound categories (i.e., classes) to be analyzed are defined in advance. We explain the typical components of an analysis system, including signal pre-processing, feature extraction, and pattern classification. We also preset an example system based on multi-label deep neural networks, which has been found to be applicable in many analysis tasks discussed in this book. Finally, we explain the whole processing chain that involves developing computational audio analysis systems. © Springer International Publishing AG 2018. All rights reserved.
    AlkuperäiskieliEnglanti
    OtsikkoComputational Analysis of Sound Scenes and Events
    ToimittajatTuomas Virtanen, Mark D. Plumbley, Dan Ellis
    JulkaisupaikkaCham
    KustantajaSpringer
    Sivut13-40
    Sivumäärä33
    ISBN (elektroninen)978-3-319-63450-0
    ISBN (painettu)978-3-319-63449-4
    DOI - pysyväislinkit
    TilaJulkaistu - 2018
    OKM-julkaisutyyppiA3 Kirjan tai muun kokoomateoksen osa

    Julkaisufoorumi-taso

    • Jufo-taso 2

    Sormenjälki

    Sukella tutkimusaiheisiin 'The machine learning approach for analysis of sound scenes and events'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä