The optimal way to play the most difficult repeated two-player coordination games

Antti Kuusisto, Raine Rönnholm

Tutkimustuotos: ArtikkeliTieteellinenvertaisarvioitu

20 Lataukset (Pure)

Abstrakti

This paper investigates repeated win-lose coordination games (WLC-games). We analyze which protocols are optimal for these games, covering both the worst case and average case scenarios, i,e., optimizing the guaranteed and expected coordination times. We begin by analyzing Choice Matching Games (CM-games) which are a simple yet fundamental type of WLC-games, where the goal of the players is to pick the same choice from a finite set of initially indistinguishable choices. We give a fully complete classification of optimal expected and guaranteed coordination times in two-player CM-games and show that the corresponding optimal protocols are unique in every case—except in the CM-game with four choices, which we analyze separately. Our results on CM-games are essential for proving a more general result on the difficulty of all WLC-games: we provide a complete analysis of least upper bounds for optimal expected coordination times in all two-player WLC-games as a function of game size. We also show that CM-games can be seen as the most difficult games among all two-player WLC-games, as they turn out to have the greatest optimal expected coordination times.

AlkuperäiskieliEnglanti
Sivut36-52
Sivumäärä17
JulkaisuDiscrete Applied Mathematics
Vuosikerta339
Varhainen verkossa julkaisun päivämäärä2023
DOI - pysyväislinkit
TilaJulkaistu - 2023
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisufoorumi-taso

  • Jufo-taso 2

!!ASJC Scopus subject areas

  • Discrete Mathematics and Combinatorics
  • Applied Mathematics

Sormenjälki

Sukella tutkimusaiheisiin 'The optimal way to play the most difficult repeated two-player coordination games'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä