The role of ubiquitous metal ions in degradation of microplastics in hot-compressed water

Tan Phat Vo, Jukka Rintala, Leilei Dai, Wen Da Oh, Chao He

Tutkimustuotos: ArtikkeliScientificvertaisarvioitu

4 Sitaatiot (Scopus)
4 Lataukset (Pure)

Abstrakti

Hydrothermal processing (HTP) is an efficient thermochemical technology to achieve sound treatment and resource recovery of sewage sludge (SS) in hot-compressed subcritical water. However, microplastics (MPs) and heavy metals can be problematic impurities for high-quality nutrients recovery from SS. This study initiated hydrothermal degradation of representative MPs (i.e., polyethylene (PE), polyamide (PA), polypropylene (PP)) under varied temperatures (180–300 °C) to understand the effect of four ubiquitous metal ions (i.e., Fe3+, Al3+, Cu2+, Zn2+) on MPs degradation. It was found that weight loss of all MPs in metallic reaction media was almost four times of that in water media, indicating the catalytic role of metal ions in HTP. Especially, PA degradation at 300 °C was promoted by Fe3+ and Al3+ with remarkable weight loss higher than 95% and 92%, respectively, which was ca. 160 °C lower than that in pyrolysis. Nevertheless, PE and PP were more recalcitrant polymers to be degraded under identical condition. Although higher temperature thermal hydrolysis reaction induced severe chain scission of polymers to reinforce degradation of MPs, Fe3+ and Al3+ ions demonstrated the most remarkable catalytic depolymerization of MPs via enhanced free radical dissociation rather than hydrolysis. Pyrolysis gas chromatography-mass spectrometry (Py GC–MS) was further complementarily applied with GC–MS to reveal HTP of MPs to secondary MPs and nanoplastics. This fundamental study highlights the crucial role of ubiquitous metal ions in MPs degradation in hot-compressed water. HTP could be an energy-efficient technology for effective treatment of MPs in SS with abundant Fe3+ and Al3+, which will benefit sustainable recovery of cleaner nutrients in hydrochar and value-added chemicals or monomers from MPs.

AlkuperäiskieliEnglanti
Artikkeli120672
Sivumäärä11
JulkaisuWater Research
Vuosikerta245
DOI - pysyväislinkit
TilaJulkaistu - 15 lokak. 2023
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisufoorumi-taso

  • Jufo-taso 3

!!ASJC Scopus subject areas

  • Environmental Engineering
  • Civil and Structural Engineering
  • Ecological Modelling
  • Water Science and Technology
  • Waste Management and Disposal
  • Pollution

Sormenjälki

Sukella tutkimusaiheisiin 'The role of ubiquitous metal ions in degradation of microplastics in hot-compressed water'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä