Towards a Real-Time Facial Analysis System

Bishwo Adhikari, Xingyang Ni, Esa Rahtu, Heikki Huttunen

Tutkimustuotos: KonferenssiartikkeliScientificvertaisarvioitu

1 Lataukset (Pure)


Facial analysis is an active research area in computer vision, with many practical applications. Most of the existing studies focus on addressing one specific task and maximizing its performance. For a complete facial analysis system, one needs to solve these tasks efficiently to ensure a smooth experience. In this work, we present a system-level design of a real-time facial analysis system. With a collection of deep neural networks for object detection, classification, and regression, the system recognizes age, gender, facial expression, and facial similarity for each person that appears in the camera view. We investigate the parallelization and interplay of individual tasks. Results on common off-the-shelf architecture show that the system's accuracy is comparable to the state-of-the-art methods, and the recognition speed satisfies real-time requirements. Moreover, we propose a multitask network for jointly predicting the first three attributes, i.e., age, gender, and facial expression. Source code and trained models are available at

OtsikkoIEEE 23rd International Workshop on Multimedia Signal Processing, MMSP 2021
ISBN (elektroninen)9781665432870
DOI - pysyväislinkit
TilaJulkaistu - 2021
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Workshop on Multimedia Signal Processing - Tampere, Suomi
Kesto: 6 lokak. 20218 lokak. 2021


NimiIEEE International Workshop on Multimedia Signal Processing
ISSN (painettu)2473-3628


ConferenceIEEE International Workshop on Multimedia Signal Processing
LyhennettäIEEE MMSP 2021


  • Jufo-taso 1

!!ASJC Scopus subject areas

  • Signal Processing
  • Safety, Risk, Reliability and Quality
  • Media Technology


Sukella tutkimusaiheisiin 'Towards a Real-Time Facial Analysis System'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä