Towards Surgically-Precise Technical Debt Estimation: Early Results and Research Roadmap

Valentina Lenarduzzi, Antonio Martini, Davide Taibi, Damian Andrew Tamburri

Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

32 Sitaatiot (Scopus)
31 Lataukset (Pure)

Abstrakti

The concept of technical debt has been explored from many perspectives but its precise estimation is still under heavy empirical and experimental inquiry. We aim to understand whether, by harnessing approximate, data-driven, machine-learning approaches it is possible to improve the current techniques for technical debt estimation, as represented by a top industry quality analysis tool such as SonarQube. For the sake of simplicity, we focus on relatively simple regression modelling techniques and apply them to modelling the additional project cost connected to the sub-optimal conditions existing in the projects under study. Our results shows that current techniques can be improved towards a more precise estimation of technical debt and the case study shows promising results towards the identification of more accurate estimation of technical debt.
AlkuperäiskieliEnglanti
OtsikkoTowards Surgically-Precise Technical Debt Estimation: Early Results and Research Roadmap
KustantajaACM
Sivut37-42
ISBN (elektroninen)978-1-4503-6855-1
DOI - pysyväislinkit
TilaJulkaistu - 27 elok. 2019
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaACM SIGSOFT International Workshop on Machine Learning Techniques for Software Quality Evaluation -
Kesto: 1 tammik. 2000 → …

Conference

ConferenceACM SIGSOFT International Workshop on Machine Learning Techniques for Software Quality Evaluation
Ajanjakso1/01/00 → …

Julkaisufoorumi-taso

  • Jufo-taso 1

Sormenjälki

Sukella tutkimusaiheisiin 'Towards Surgically-Precise Technical Debt Estimation: Early Results and Research Roadmap'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä