Towards Ubiquitous Indoor Positioning: Comparing Systems across Heterogeneous Datasets

Joaquín Torres-Sospedra, Ivo Silva, Lucie Klus, Darwin Quezada-Gaibor, Antonino Crivello, Paolo Barsocchi, Cristiano Pendão, Elena Simona Lohan, Jari Nurmi, Adriano Moreira

Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

11 Sitaatiot (Scopus)
24 Lataukset (Pure)

Abstrakti

The evaluation of Indoor Positioning Systems (IPS) mostly relies on local deployments in the researchers' or partners' facilities. The complexity of preparing comprehensive experiments, collecting data, and considering multiple scenarios usually limits the evaluation area and, therefore, the assessment of the proposed systems. The requirements and features of controlled experiments cannot be generalized since the use of the same sensors or anchors density cannot be guaranteed. The dawn of datasets is pushing IPS evaluation to a similar level as machine-learning models, where new proposals are evaluated over many heterogeneous datasets. This paper proposes a way to evaluate IPSs in multiple scenarios, that is validated with three use cases. The results prove that the proposed aggregation of the evaluation metric values is a useful tool for high-level comparison of IPSs.
AlkuperäiskieliEnglanti
Otsikko2021 International Conference on Indoor Positioning and Indoor Navigation (IPIN)
KustantajaIEEE
Sivumäärä8
ISBN (elektroninen)978-1-6654-0402-0
DOI - pysyväislinkit
TilaJulkaistu - 4 tammik. 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference on Indoor Positioning and Indoor Navigation - Lloret de Mar, Espanja
Kesto: 29 marrask. 20212 jouluk. 2021

Julkaisusarja

NimiInternational Conference on Indoor Positioning and Indoor Navigation
ISSN (elektroninen)2471-917X

Conference

ConferenceInternational Conference on Indoor Positioning and Indoor Navigation
Maa/AlueEspanja
KaupunkiLloret de Mar
Ajanjakso29/11/212/12/21

Julkaisufoorumi-taso

  • Jufo-taso 1

Sormenjälki

Sukella tutkimusaiheisiin 'Towards Ubiquitous Indoor Positioning: Comparing Systems across Heterogeneous Datasets'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä