Transfer learning for no-reference image quality metrics using large temporary image sets

Mykola Ponomarenko, Sheyda Ghanbaralizadeh Bahnemiri, Karen Egiazarian

Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

1 Sitaatiot (Scopus)

Abstrakti

One of the main problems of neural network-based no-reference metrics design for image visual quality assessment is small size of image databases with mean opinion scores (MOS). For large networks which can memorize key features of several thousands of images, usage of the databases for metrics training may lead to overlearning. Since data augmentation for image quality assessment is limited by a horizontal image flipping only, the main way to decrease overlearning is to use transfer learning which can significantly speed up training process. In theis paper, we propose a new technique of transfer learning between networks of different architectures using a large set of images without MOS. We implemented the technique for transfer learning between pretrained KonCept512 metric and a IMQNet metric proposed in this paper. An effectiveness of the transfer learning is estimated in a numerical analysis. It is shown that the trained IMQNet metric provides significantly better correlation with KonCept512 metric (0.89) than other modern metrics. It is also shown that IMQNet pretrained by the proposed transfer learning shows better correlation with MOS of KonIQ-10k database (0.86) than IMQNet pre-trained using directly the MOS of KonIQ10k (0.73).

AlkuperäiskieliEnglanti
OtsikkoProc. IS&T Int’l. Symp. on Electronic Imaging: Computational Imaging
Sivumäärä5
Vuosikerta34
Painos14
DOI - pysyväislinkit
TilaJulkaistu - 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIS and T International Symposium on Electronic Imaging: Computational Imaging -
Kesto: 17 tammik. 202226 tammik. 2022

Julkaisusarja

NimiIS and T International Symposium on Electronic Imaging Science and Technology
ISSN (painettu)2470-1173

Conference

ConferenceIS and T International Symposium on Electronic Imaging: Computational Imaging
Ajanjakso17/01/2226/01/22

Julkaisufoorumi-taso

  • Jufo-taso 1

!!ASJC Scopus subject areas

  • Computer Graphics and Computer-Aided Design
  • Computer Science Applications
  • Human-Computer Interaction
  • Software
  • Electrical and Electronic Engineering
  • Atomic and Molecular Physics, and Optics

Sormenjälki

Sukella tutkimusaiheisiin 'Transfer learning for no-reference image quality metrics using large temporary image sets'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä