Understanding Physics-Informed Neural Networks: Techniques, Applications, Trends, and Challenges

Tutkimustuotos: Katsausartikkelivertaisarvioitu

8 Sitaatiot (Scopus)
43 Lataukset (Pure)

Abstrakti

Physics-informed neural networks (PINNs) represent a significant advancement at the intersection of machine learning and physical sciences, offering a powerful framework for solving complex problems governed by physical laws. This survey provides a comprehensive review of the current state of research on PINNs, highlighting their unique methodologies, applications, challenges, and future directions. We begin by introducing the fundamental concepts underlying neural networks and the motivation for integrating physics-based constraints. We then explore various PINN architectures and techniques for incorporating physical laws into neural network training, including approaches to solving partial differential equations (PDEs) and ordinary differential equations (ODEs). Additionally, we discuss the primary challenges faced in developing and applying PINNs, such as computational complexity, data scarcity, and the integration of complex physical laws. Finally, we identify promising future research directions. Overall, this survey seeks to provide a foundational understanding of PINNs within this rapidly evolving field.

AlkuperäiskieliEnglanti
Sivut1534-1557
Sivumäärä24
JulkaisuAI
Vuosikerta5
Numero3
DOI - pysyväislinkit
TilaJulkaistu - syysk. 2024
OKM-julkaisutyyppiA2 Katsausartikkeli tieteellisessä aikakauslehdessä

Julkaisufoorumi-taso

  • Jufo-taso 1

!!ASJC Scopus subject areas

  • Artificial Intelligence

Sormenjälki

Sukella tutkimusaiheisiin 'Understanding Physics-Informed Neural Networks: Techniques, Applications, Trends, and Challenges'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä