Unfolding-Aided Bootstrapped Phase Retrieval in Optical Imaging: Explainable AI reveals new imaging frontiers

Samuel Pinilla, Kumar Vijay Mishra, Igor Shevkunov, Mojtaba Soltanalian, Vladimir Katkovnik, Karen Egiazarian

Tutkimustuotos: ArtikkeliScientificvertaisarvioitu

1 Sitaatiot (Scopus)
2 Lataukset (Pure)

Abstrakti

Phase retrieval in optical imaging refers to the recovery of a complex signal from phaseless data acquired in the form of its diffraction patterns. These patterns are acquired through a system with a coherent light source that employs a diffractive optical element (DOE) to modulate the scene, resulting in coded diffraction patterns (CDPs) at the sensor. Recently, the hybrid approach of a model-driven network or deep unfolding has emerged as an effective alternative to conventional model- and learning-based phase-retrieval techniques because it allows for bounding the complexity of algorithms while also retaining their efficacy. Additionally, such hybrid approaches have shown promise in improving the design of DOEs that follow theoretical uniqueness conditions. There are opportunities to exploit novel experimental setups and resolve even more complex DOE phase-retrieval applications. This article presents an overview of algorithms and applications of deep unfolding for bootstrapped - regardless whether near, middle, or far zones - phase retrieval.

AlkuperäiskieliEnglanti
Sivut46-60
Sivumäärä15
JulkaisuIEEE Signal Processing Magazine
Vuosikerta40
Numero2
DOI - pysyväislinkit
TilaJulkaistu - 1 maalisk. 2023
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisufoorumi-taso

  • Jufo-taso 3

!!ASJC Scopus subject areas

  • Signal Processing
  • Electrical and Electronic Engineering
  • Applied Mathematics

Sormenjälki

Sukella tutkimusaiheisiin 'Unfolding-Aided Bootstrapped Phase Retrieval in Optical Imaging: Explainable AI reveals new imaging frontiers'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä