Using Fairness Metrics as Decision-Making Procedures: Algorithmic Fairness and the Problem of Action-Guidance

Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

14 Lataukset (Pure)

Abstrakti

Frameworks for fair machine learning are envisioned to play an important practical role in the evaluation, training, and selection of machine learning models. In particular, fairness metrics are meant to provide responsible agents with actionable standards for evaluating ML models and conditions which those models should achieve. However, recent studies suggest that fair ML frameworks and metrics do not provide sufficient and actionable guidance for agents. This short paper outlines the main content of a working paper wherein I draw lessons from philosophical debates concerning action-guidance to build a conceptual account that can be applied to analyze whether and when fair ML frameworks and metrics can generate determinate evaluations of fairness and actionable prescriptions for model selection.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the 2nd European Workshop on Algorithmic Fairness Winterthur, Switzerland, June 7th to 9th, 2023
ToimittajatJose M. Alvarez, Alessandro Fabris, Christoph Heitz, Corinna Hertweck, Michele Loi, Meike Zehlike
KustantajaCEUR
Sivumäärä5
TilaJulkaistu - 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaEuropean Workshop on Algorithmic Fairness - Winterthur, Sveitsi
Kesto: 7 kesäk. 20239 kesäk. 2023

Julkaisusarja

NimiWorkshop proceedings
KustantajaCEUR
ISSN (elektroninen)1613-0073

Conference

ConferenceEuropean Workshop on Algorithmic Fairness
Maa/AlueSveitsi
KaupunkiWinterthur
Ajanjakso7/06/239/06/23

Julkaisufoorumi-taso

  • Jufo-taso 1

Sormenjälki

Sukella tutkimusaiheisiin 'Using Fairness Metrics as Decision-Making Procedures: Algorithmic Fairness and the Problem of Action-Guidance'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä