View-independent human action recognition based on multi-view action images and discriminant learning

Alexandros Iosifidis, Anastasios Tefas, Ioannis Pitas

    Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

    5 Sitaatiot (Scopus)

    Abstrakti

    In this paper a novel view-independent human action recognition method is proposed. A multi-camera setup is used to capture the human body from different viewing angles. Actions are described by a novel action representation, the so-called multi-view action image (MVAI), which effectively addresses the camera viewpoint identification problem, i.e., the identification of the position of each camera with respect to the person's body. Linear Discriminant Analysis is applied on the MVAIs in order to to map actions to a discriminant feature space where actions are classified by using a simple nearest class centroid classification scheme. Experimental results denote the effectiveness of the proposed action recognition approach.

    AlkuperäiskieliEnglanti
    Otsikko2013 IEEE 11th IVMSP Workshop: 3D Image/Video Technologies and Applications, IVMSP 2013 - Proceedings
    DOI - pysyväislinkit
    TilaJulkaistu - 2013
    OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
    Tapahtuma2013 IEEE 11th Workshop on 3D Image/Video Technologies and Applications, IVMSP 2013 - Seoul, Etelä-Korea
    Kesto: 10 kesäk. 201312 kesäk. 2013

    Conference

    Conference2013 IEEE 11th Workshop on 3D Image/Video Technologies and Applications, IVMSP 2013
    Maa/AlueEtelä-Korea
    KaupunkiSeoul
    Ajanjakso10/06/1312/06/13

    !!ASJC Scopus subject areas

    • Computer Graphics and Computer-Aided Design
    • Computer Vision and Pattern Recognition
    • Computer Science Applications

    Sormenjälki

    Sukella tutkimusaiheisiin 'View-independent human action recognition based on multi-view action images and discriminant learning'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä