What Is a Digital Twin? Experimental Design for a Data-Centric Machine Learning Perspective in Health

Tutkimustuotos: ArtikkeliScientificvertaisarvioitu

16 Sitaatiot (Scopus)
7 Lataukset (Pure)

Abstrakti

The idea of a digital twin has recently gained widespread attention. While, so far, it has been used predominantly for problems in engineering and manufacturing, it is believed that a digital twin also holds great promise for applications in medicine and health. However, a problem that severely hampers progress in these fields is the lack of a solid definition of the concept behind a digital twin that would be directly amenable for such big data-driven fields requiring a statistical data analysis. In this paper, we address this problem. We will see that the term ’digital twin’, as used in the literature, is like a Matryoshka doll. For this reason, we unstack the concept via a data-centric machine learning perspective, allowing us to define its main components. As a consequence, we suggest to use the term Digital Twin System instead of digital twin because this highlights its complex interconnected substructure. In addition, we address ethical concerns that result from treatment suggestions for patients based on simulated data and a possible lack of explainability of the underling models.

AlkuperäiskieliEnglanti
Artikkeli13149
JulkaisuInternational Journal of Molecular Sciences
Vuosikerta23
Numero21
DOI - pysyväislinkit
TilaJulkaistu - marrask. 2022
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisufoorumi-taso

  • Jufo-taso 1

!!ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Sormenjälki

Sukella tutkimusaiheisiin 'What Is a Digital Twin? Experimental Design for a Data-Centric Machine Learning Perspective in Health'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä